
A Carbon Capture & Storage (CCS) Comic Book Created to Sustain Texas STEM and Public Acceptance: Carbon-nots to the Rescue!

Dolores van der Kolk (<u>dvdk@beg.utexas.edu</u>),

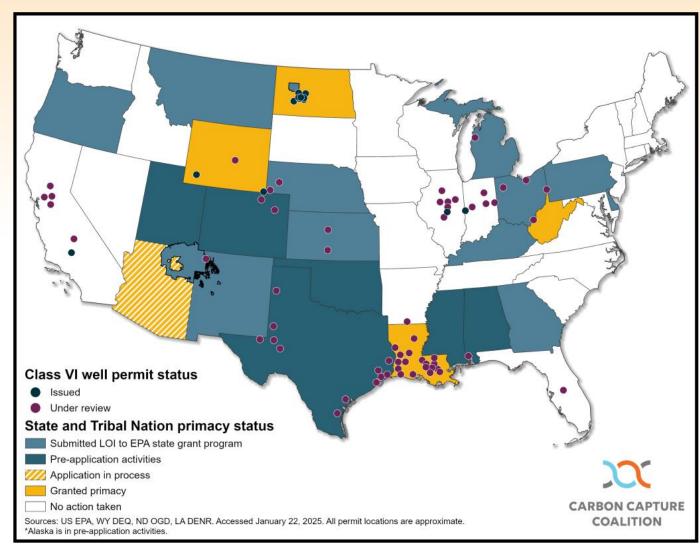
Francine Mastrangelo, Susan Hovorka,

Valerie Tran, & Angela Luciano

Sunday, October 19, 2025

Where are we with Carbon Capture & Storage (CCS)?

CCS is accelerating globally


CCS projects are projected to increase as Texas and other states approach CCS primacy

 CCS primacy removes federal oversight allowing states to regulate and permit Class VI underground injection control wells for injecting carbon dioxide (CO₂)

CCS has a major P.R. problem

The world needs to act, but <u>many</u> do not understand this technology; there is resistance and misinformation to work through

We need ALL ways to communicate how important CCS is to help decrease greenhouse gases in our atmosphere

GCCC's PI, Sue Hovorka, recognized a vital need for accurate & appropriate CCS information for many stakeholders:

 state and local government officials, diverse interest groups including workers, unions, landowner organizations, community groups, trade groups, environmental and other interest organizations, and local residents

Vision 1. Create a TXLA CMC CCS Network, a "Phone Book" to unite CCS stakeholders and a way to distribute newsletters with CCS resources

Vision 2. Create a university network, and their connections, as valued communicators for providing CCS information in appropriate formats that are both welcome and useful

Funded by Department of Energy's National Energy Technology Laboratory (DOE-NETL) project DE-FE32361

GCCC's TXLA CMC Hosts CCS Workshop for 6th-12th Grade STEM Teachers

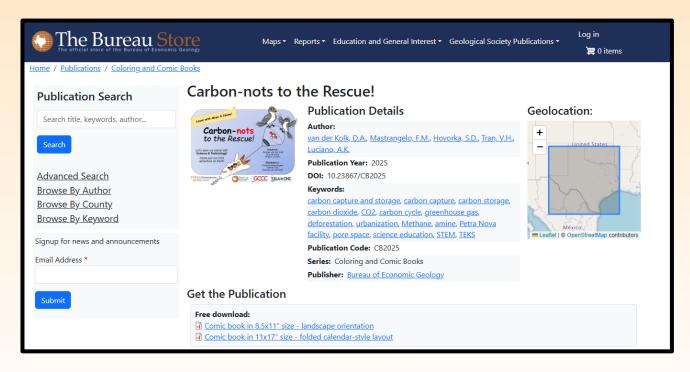
The <u>Gulf Coast Carbon Center</u>'s Carbon-not Education & Ambassador Program empowers teachers to build expertise in carbon capture and storage (CCS) technologies and helps them create and distribute educational resources for K-12 educators throughout Texas & Louisiana

Utilize experts: STEM teachers + CCS
Researchers to learn from one another,
collaborate, and build products to
properly communicate to kids and help
spread the word about CCS

Avg. U.S. adult reads at a 7th- or 8th-grade level

Middle School Teachers Requested a CCS Comic Book in 2024

- Created hands-on STEM exercises and resources
- Carbon-not Ambassadors (expert teachers) <u>summary of the GCCC's day-to-day workshop</u>, workshop & distributing materials at Conferences for the Science Teachers Association of Texas (CAST24 & CAST25 Nov. 13-15, 2026, in Dallas)


GOALS?

- ✓ Produce a busy, "Mad Magazine" style, CCS-focused comic book
- ✓ Align, and support, Texas curriculum outlined in Texas Essential Knowledge and Skills (TEKS)
 - 7th & 8th Grade TEKS (S.7.6.A–C & S.8.11.A–C)

Raise CCS awareness and public acceptance:

- ✓ Accessible for teachers
- ✓ Accessible to those in industry
 - Purchase mass productions for school districts or schools near their CCS projects

GCCC's TXLA CMC Delivers a CCS Comic Book

Available for *FREE* online

Purchase from Bureau of Economic Geology's Bookstore:

https://store.beg.utexas.edu/publications/coloring-and-comic-books/cb2025

- 8.5 x 11 for standard printer, book format (\$1.20)
- 11 x 17 for large reproduction print jobs in a calendar format (cheapest for mass productions at \$0.60)

Exploring Earth Science in Texas Coloring Book

Bureau of Economic Geology is a great online resource

*Information Geologist, Linda McCall, who is a great resource for the general public & for educators

Cosmo, we do NOT have to be SO hot!

Hot!

HOT!

Oh, gee Maya!
There is a rise in average
temperature on Earth, because there
is **too much CO**2 in the atmosphere.

TOO MUCH CO2!

Character to repeat important messages?

Observer of Earth Processes & Industry?

Tie them to Texas in a meaningful way?

Cosmo and Maya are the Texas State
Bird known as
Northern Mockingbirds

Mockingbirds are known to mimic a variety of sounds. Their song is a long series of phrases that they often repeat 2 to 6 times before shifting to a new sound.

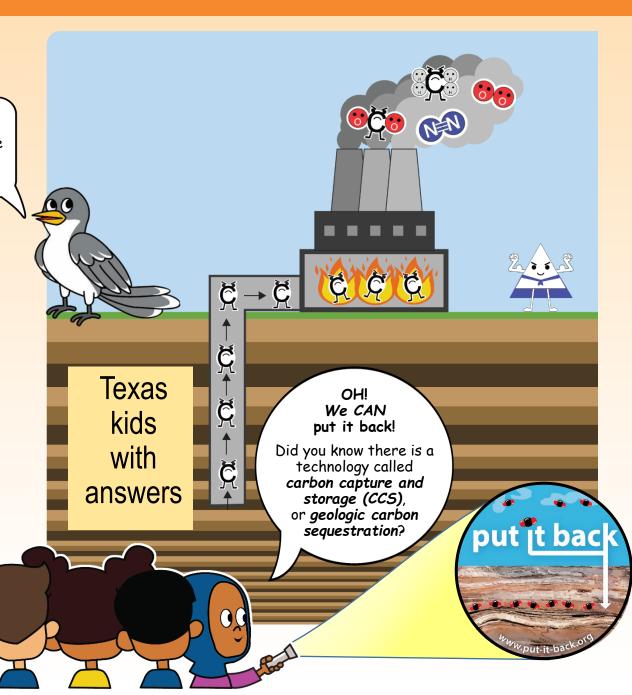


Photo Credit: Jay McGowan

Integrating TEKS as Content

TEKS S.8.11.B

"Further Explanation

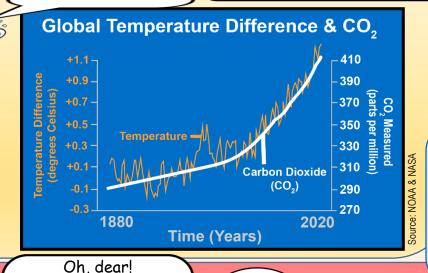
Greenhouse gases can be released and absorbed in various wavs. Carbon dioxide enters the atmosphere through burning fossil fuels (coal, natural gas, and oil), solid waste, trees, and other biological materials and also as a result of certain chemical reactions (e.g., manufacture of cement). Carbon dioxide is removed from the atmosphere (or sequestered) when it is absorbed by plants as part of the biological carbon cycle.

What is carbon dioxide (CO₂)?

CO₂ is known as a **greenhouse gas**, since this gas *traps* heat in our atmosphere.

CO₂ has been recorded in the atmosphere in studies since 1958 at the Mauna Loa Observatory in Hawaii.

Higher concentrations of CO₂ are observed due to various human activities.


CO₂ can enter Earth's atmosphere when we burn fossil fuels like **coal**, **natural gas**, and **oil**, as well as **trees**, and **solid waste**.

It can also enter the atmosphere because of chemical reactions that occur when manufacturing plastic, cement, or steel.

Cosmo,
I am getting too hot
and too thirsty!

TOO HOT! TOO THIRSTY! Oh, gee Maya!
There is a rise in average
temperature on Earth, because there
is too much CO₂ in the atmosphere.

TOO MUCH CO2!

CO₂ comes from a variety of natural sources,
 but human-related emissions have been responsible for an increase in the atmosphere since the industrial revolution.

Rising heat causes

HOTTER HEAT WAVES,

MORE FREQUENT

DROUGHTS, FIRES,

HEAVIER RAINFALL,

and FLOODS!

FLOODS!

Maya,
it is
getting
HOTTER!!

PEOPLE, can you stop letting CO₂ go?

THIS has to STOP!

HAS TO STOP!

Teacher's Carbon Cycle

Follow me as I cycle through air, earth, and ocean in the Carbon Cycle

3 Nitrogen, NN
Oxygen
Water vapor and CO2 are major gasses in the air
NN
Oxygen

Figure of the CO2
Some of the CO2
Some of the CO2
In the ocean dissolves in

Revising a version of this carbon cycle with CCS facility to include in handouts for the comic book handout bundle (coming soon to book store)

I see it every day.

Carbon that was stored in the Earth
as coal, oil, or gas is burned
(combusted)

to make energy. The ${\it CO}_2$ that is released mixes with the atmosphere.

CO₂ is also emitted by chemical reactions not related to combustion. The production of cement,

metals, like iron and steel, and certain chemicals can make

A LOT OF CO₂!

I'm a chemical element known as **carbon (C)**, and I am the backbone for life.

On Earth, I am mostly stored in rocks and sediments underground.

Fossil fuels contain mostly C and Hydrogen (H). When fossil fuels are burned or used in industrial processes C bonds with O₂ to form CO₂.

I'm an **oxygen molecule** (O₂), and am essential for living organisms. When burning, I react with **C** to form **CO**₂.

I'm CO₂, a gas that forms when C and O₂ bond.

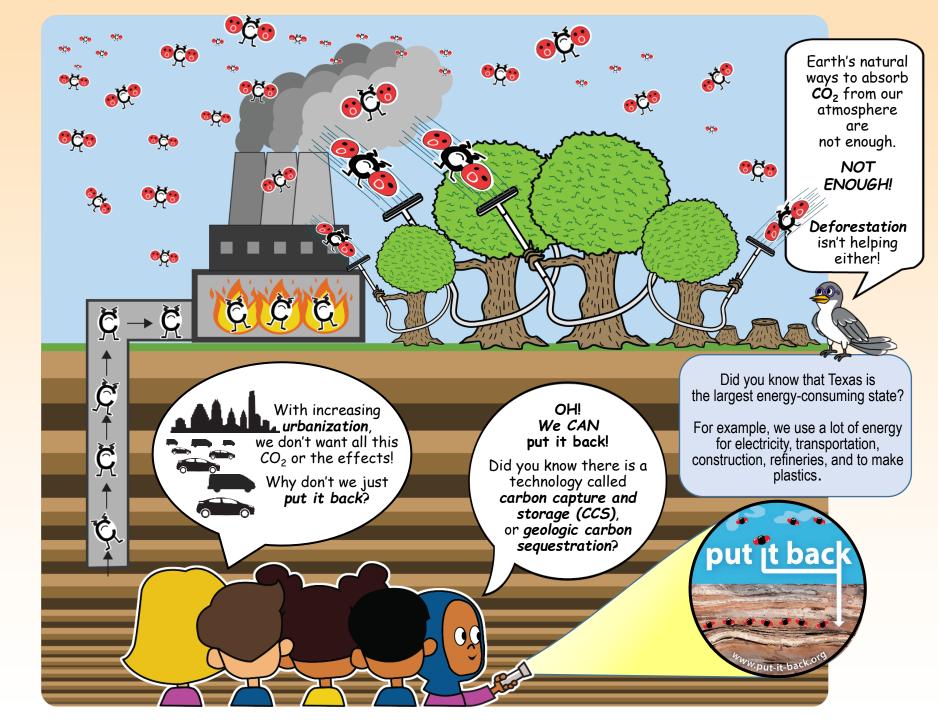
When high volumes of CO_2 accumulate in the atmosphere, heat becomes *trapped* there.

I'm a **nitrogen** molecule (**N**₂), and I am inert, making me chemically inactive.

I'm a gas known as **methane**.

I am a molecule that contains 1 **C** and 4 **hydrogen** atoms.

I am the $2^{\rm nd}$ most abundant greenhouse gas after ${\bf CO_2}$ in industrial waste.


TEKS Vocabulary Visually

Creative ways to visualize concepts

- Using a vacuum cleaner to suck up CO₂
- Cut trees for deforestation

TEKS S.8.11.A-C Vocab

- Carbon Cycle
- Climate
- Greenhouse gases
- Deforestation
- Urbanization

Time & Budget Crunch

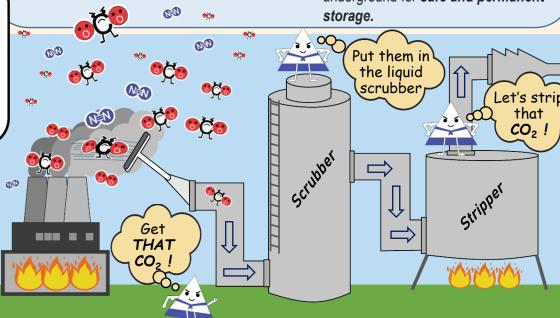
- Requested comic book was not in the original TXLA CMC proposal, but was recommended by the teachers, so there was a limited budget
- Initially given ~ month of time
- Utilized two graphic design illustrators while I was storyboarding at the same time
- We used Illustrator and brought scenes and characters into PowerPoint:
 - Story boarding
 - Speech balloons
 - Layout

Right: Introducing our Amine Heroes

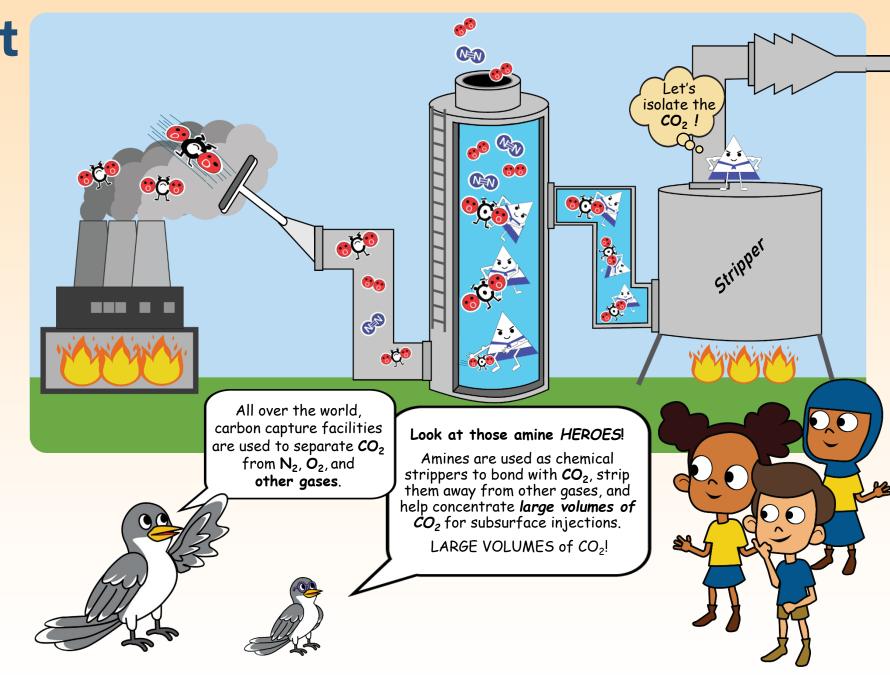
Oh, Cosmo, HOW do we separate CO₂ from all the different gases released from industrial processes?

I'm a salt compound, known as an **amine molecule**. My job is to absorb $\mathbf{CO_2}$ from industry emitted gases. I'm useful in the carbon battle! When I'm exposed to hot temperatures, $\mathbf{CO_2}$ is stripped away from me.

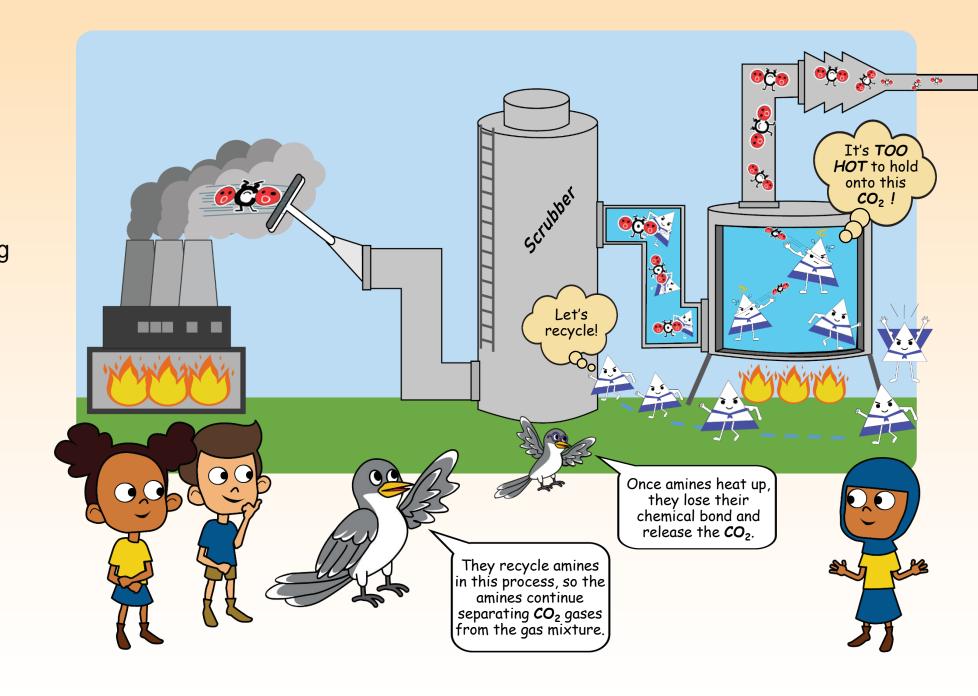
We use carbon separation facility, and amines to separate CO₂ from other industrial gases produced.


Calling all amines,

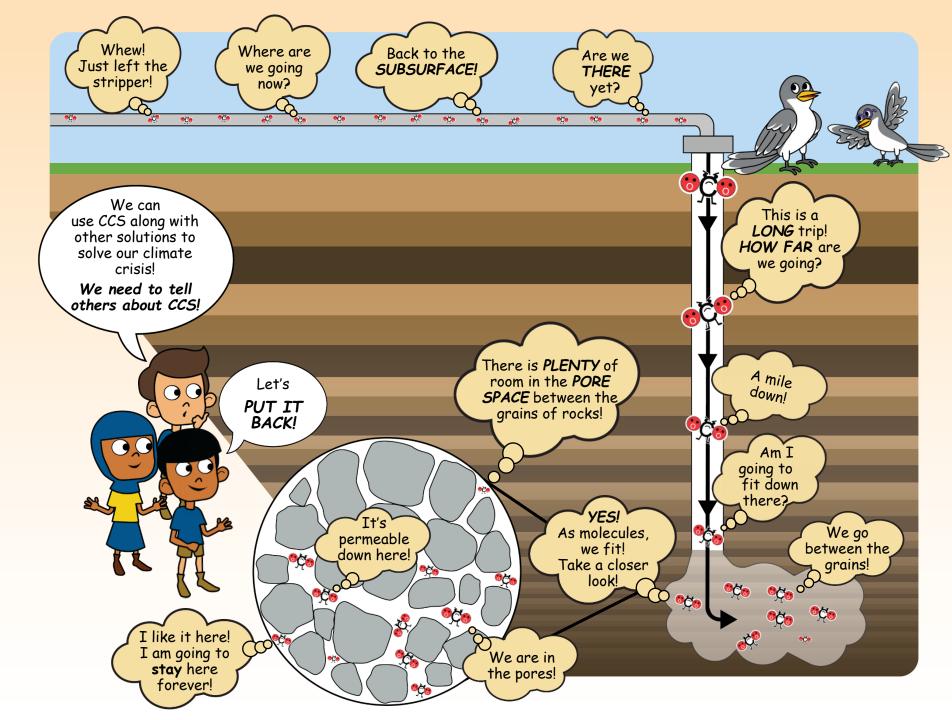
AMINES!


One of the world's largest CCS projects is in Sugarland, near Houston, Texas.

This CCS project, known as the **Petra Nova plant**, was built to capture 1.4
million tons of **CO**₂ per year. After
separating and capturing the CO₂, the
CO₂ is compressed, dried, and
transported in a pipeline to inject
underground for *safe and permanent*storage.


Time & Budget Crunch

- Needed illustrations that could be used repeatedly to decrease drafting hours & adequately handle our time crunch
 - Mockingbirds have a few forms that get rotated and translated different ways
 - Scenes are duplicated, but slightly modified to tell the story around them


Time & Budget Crunch

 Duplicating and reusing scenes is a common technique to save time and add storytelling effects

Two Versions

 Accommodate this scene across 2 pages in the book and calendar style formats

How do we present scale to Texas kids?

Ultimately decided on football fields...

In Texas,

CO₂ is injected at least
0.5 to 2 miles down below the

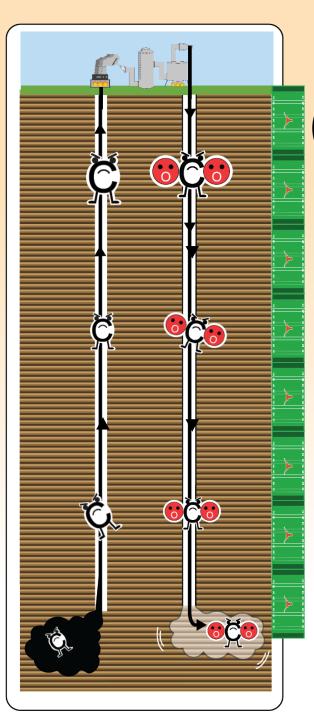
ground.

How many football field lengths put end-to-end does it take to show how deep we store CO₂ in the ground?

Let's make some "back-of-the-envelope" calculations:

1 football field = 120 yards 0.5 miles = 880 yards 1 mile = 1,760 yards 2 miles = 3,520 yards...

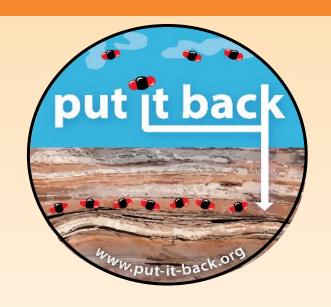
 How many football fields stacked end-to-end would it take to get 0.5 miles down below the surface?


880 yards/120 yards =

7.3

football fields

 How many football fields stacked end-to-end would it take to get 2 miles down below the surface?


3,520 yards/120 yards = $\frac{29.3}{}$

Wow,
that means for
CCS projects, they don't
inject CO₂ until they have
drilled to at least 7.3
football fields
down!

Cool, this creates permanent and safe CO₂ storage!

Helpful Resources & Links

- Bureau of Economic Geology
- Gulf Coast Carbon Center
- About TXLA CMC
- Join the TXLA CMC network
- Carbon-not Education & Ambassador Program
- Access to <u>CCS comic book</u>
- Access to <u>coloring book</u>

- Global CCS Institute's Global State of CCS -Where is CCS happening in the world right now?
- EPA's Underground Injection Control (UIC) Class VI Permit Tracker
- U.S. Roads to Removal Plan
- GCCC's UNFCCC COP 29 CCS Booth Exhibit

GCCC's CCS

- Resource Hub
- Outreach Materials
- Video Catalog

Special Thanks to 2024–2025 GCCC Sponsors & Representatives who Participated in the Comic Book Review Process

equinor

Special thanks to DOE-NETL funding opportunity (DE-FE32361)

Questions? Dolores van der Kolk (dvdk@beg.utexas.edu)

About the Gulf Coast Carbon Center

We seek to impact global levels of atmospheric carbon dioxide (CO₂) by:

- conducting studies, often focusing on the Gulf of Mexico, in regard to geological storage, retention and monitoring of CO₂ in the deep subsurface;
- educating the public about the process of geological CO₂ storage; and
- enabling the private sector to develop an economically viable industry to store CO₂ in the Gulf of Mexico, across the U.S., and globally.

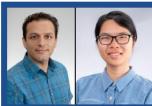
Geologic Characterization

Carlos Uroza

Alex Bump

Timothy Meckel

Mariana Olariu


Shuvajit Bhattacharya

Surface or **Deep Monitoring**

Susan Katherine Hovorka Romanak

Fluid-Flow Modeling

Seyyed Hailun Ni Hosseini

Seismic Interpretation

Ramón **Dallas** Treviño Dunlap

Energy Economist

Ramón Gil-Equi

Project Manager

Angela Luciano

Communications Coordinator

Dolores van der Kolk

Postdoctoral Fellows

Hongsheng

Jungang (Gordon) Chen

Graduate Students

Ruba Afifi

Javid Aliyev

Previna

Arumugam

Sean Avitt

Bimar Maulana

Edwina

Owusu-

Adjapong

Argenis Pelayo

Romal Ramadhan

Eddie Talen

Melianna Ulfah

International Research Fellows

Tim Dixon, **IEAGHG, UK**

Charles Jenkins CSIRO, Australia

2025 GSA Abstract

By **Dolores van der Kolk** (dvdk@beg.utexas.edu), Francine Mastrangelo, Susan Hovorka, Valerie Tran, & Angela Luciano

The Carbon-nots to the Rescue comic book was designed as supplemental material to help middle school science teachers explain new concepts within revised state educational standards for Texas students, known as Texas Essential Knowledge and Skills (TEKS). This comic book colorfully illustrates the importance of science (e.g., elements and molecules in chemistry; pores and permeability within geology) and outlines how innovative technology in Texas, known as CCS, will help decrease atmospheric greenhouse gases. The comic is currently used to help clarify STEM concepts in both middle schools and high schools and is also useful for general audiences. This comes at a critical time as CCS is accelerating, and as Texas approaches CCS primacy. CCS primacy removes federal oversight and allows a state to regulate and permit Class VI underground injection control wells for carbon dioxide (CO₂) sequestration under the Safe Drinking Water Act, which will likely grow in the U.S. and increase business investments.

Riveting content in the comic book aligns well with TEKS standards designed for seventh and eighth graders (TEKS S.7.6.A–C; S.8.11.A–C). By utilizing TEKS S.8.11.B, the comic book narrates how greenhouse gases are released from the burning of fossil fuels (coal, natural gas, oil), solid waste, and trees as well as during various chemical reactions necessary for industrialization (e.g., manufacturing of cement). The comic illustrates how greenhouse gases are absorbed by photosynthetic organisms and how deforestation and urbanization negatively affect the natural balance of the carbon cycle.

Join two Northern Mockingbirds, the state birds of Texas, as they repeatedly share their observations in a Carbon-not adventure with students. See Texas kids and their new feathered friends discuss cutting edge chemical solutions to reduce our carbon output into the atmosphere(e.g., capturing and separating CO and injecting CO underground permanently). *Coming soon*: Delve into new vocabulary and explore student creativity through critical thinking questions, a coloring page for all ages, a vocabulary list, and a carbon cycle exercise made for the classroom and science exploration events. It's time to make this a global phenomenon!